Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters

Language
Document Type
Year range
1.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.03.15.532878

ABSTRACT

The stem-loop II motif (s2m) is a RNA structural element that is found in the 3' untranslated region (UTR) of many RNA viruses including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Though the motif was discovered over twenty-five years ago, its functional significance is unknown. In order to understand the importance of s2m, we created viruses with deletions or mutations of the s2m by reverse genetics and also evaluated a clinical isolate harboring a unique s2m deletion. Deletion or mutation of the s2m had no effect on growth in vitro, or growth and viral fitness in Syrian hamsters in vivo. We also compared the secondary structure of the 3' UTR of wild type and s2m deletion viruses using SHAPE-MaP and DMS-MaPseq. These experiments demonstrate that the s2m forms an independent structure and that its deletion does not alter the overall remaining 3'UTR RNA structure. Together, these findings suggest that s2m is dispensable for SARS-CoV-2.


Subject(s)
Virus Diseases , Severe Acute Respiratory Syndrome
2.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.04.30.486882

ABSTRACT

The stem-loop II motif (s2m) is an RNA element present in viruses from divergent viral families, including astroviruses and coronaviruses, but its functional significance is unknown. We created deletions or substitutions of the s2m in astrovirus VA1 (VA1), classic human astrovirus 1 (HAstV1) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). For VA1, recombinant virus could not be rescued upon partial deletion of the s2m or substitutions of G-C base pairs. Compensatory substitutions that restored the G-C base-pair enabled recovery of VA1. For HAstV1, a partial deletion of the s2m resulted in decreased viral titers compared to wild-type virus, and reduced activity in a replicon system. In contrast, deletion or mutation of the SARS-CoV-2 s2m had no effect on the ability to rescue the virus, growth in vitro, or growth in Syrian hamsters. Our study demonstrates the importance of the s2m is virus-dependent.


Subject(s)
Severe Acute Respiratory Syndrome
4.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-228079.v1

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the global COVID-19 pandemic infecting more than 106 million people and causing 2.3 million deaths. The rapid deployment of antibody-based countermeasures has provided hope for curtailing disease and ending the pandemic1. However, the emergence of rapidly-spreading SARS-CoV-2 variants in the United Kingdom (B.1.1.7), South Africa (B.1.351), and elsewhere with mutations in the spike protein has raised concern for escape from neutralizing antibody responses and loss of vaccine efficacy based on preliminary data with pseudoviruses2-4. Here, using monoclonal antibodies (mAbs), animal immune sera, human convalescent sera, and human sera from recipients of the Pfizer-BioNTech (BNT162b2) mRNA vaccine, we report the impact on antibody neutralization of a panel of authentic SARS-CoV-2 variants including a B.1.1.7 isolate, a chimeric Washington strain with a South African spike gene (Wash SA-B.1.351), and isogenic recombinant variants with designed mutations or deletions at positions 69-70, 417, 484, 501, and/or 614 of the spike protein. Several highly neutralizing mAbs engaging the receptor binding domain (RBD) or N-terminal domain (NTD) lost inhibitory activity against Wash SA-B.1.351 or recombinant variants with an E484K spike mutation. Most convalescent sera and virtually all mRNA vaccine-induced immune sera tested showed markedly diminished neutralizing activity against the Wash SA-B.1.351 strain or recombinant viruses containing mutations at position 484 and 501. We also noted that cell line selection used for growth of virus stocks or neutralization assays can impact the potency of antibodies against different SARS-CoV-2 variants, which has implications for assay standardization and congruence of results across laboratories. As several antibodies binding specific regions of the RBD and NTD show loss-of-neutralization potency in vitro against emerging variants, updated mAb cocktails, targeting of highly conserved regions, enhancement of mAb potency, or adjustments to the spike sequences of vaccines may be needed to prevent loss of protection in vivo.


Subject(s)
Coronavirus Infections , COVID-19
5.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.05.18.102038

ABSTRACT

Antibody-based interventions against SARS-CoV-2 could limit morbidity, mortality, and possibly disrupt epidemic transmission. An anticipated correlate of such countermeasures is the level of neutralizing antibodies against the SARS-CoV-2 spike protein, yet there is no consensus as to which assay should be used for such measurements. Using an infectious molecular clone of vesicular stomatitis virus (VSV) that expresses eGFP as a marker of infection, we replaced the glycoprotein gene (G) with the spike protein of SARS-CoV-2 (VSV-eGFP-SARS-CoV-2) and developed a high-throughput imaging-based neutralization assay at biosafety level 2. We also developed a focus reduction neutralization test with a clinical isolate of SARS-CoV-2 at biosafety level 3. We compared the neutralizing activities of monoclonal and polyclonal antibody preparations, as well as ACE2-Fc soluble decoy protein in both assays and find an exceptionally high degree of concordance. The two assays will help define correlates of protection for antibody-based countermeasures including therapeutic antibodies, immune {gamma}-globulin or plasma preparations, and vaccines against SARS-CoV-2. Replication-competent VSV-eGFP-SARS-CoV-2 provides a rapid assay for testing inhibitors of SARS-CoV-2 mediated entry that can be performed in 7.5 hours under reduced biosafety containment.

SELECTION OF CITATIONS
SEARCH DETAIL